quarta-feira, 23 de setembro de 2009

Substâncias Geradas durante a Compostagem

SUBSTÂNCIAS GERADAS DURANTE A COMPOSTAGEM

No processo de compostagem, que se completa após a formação do húmus, três fases distintas podem ser reconhecidas:

a) rápida decomposição de certos constituintes pelos microrganismos.

b) síntese de novas substâncias criadas pelos microrganismos.

c) formação de complexos resistentes em razão dos processos de condensação e polimerização. Resíduos vegetais e animais não são igualmente atacados, nem se decompõem inteiramente de uma só vez; seus diversos constituintes são decompostos em diferentes estágios, com diferentes intensidades e por diferentes populações de microrganismos. Os açúcares, os amidos e as proteínas solúveis são decompostos em primeiro lugar, seguindo-se de algumas hemiceluloses e demais proteínas. Celulose, certas hemiceluloses, óleos, gorduras, resinas e outros constituintes das plantas são decompostos mais demoradamente. As ligninas, certas graxas e taninos são os materiais considerados mais resistentes à decomposição. Enquanto houver decomposição aeróbia, o carbono será liberado como gás carbônico, entretanto, se o processo tornar-se anaeróbio, eliminar-se-ão, além do CO2, metano, álcool e ácidos orgânicos. As proteínas, por decomposição, são primeiramente hidrolisadas por enzimas proteolíticas produzidas pelos microrganismos, gerando polipeptídios, aminoácidos e outros derivados nitrogenados; o nitrogênio orgânico é convertido à forma amoniacal. Ao final do processo obtém-se o húmus, ou seja, uma substância escura, uniforme, amorfa, rica em partículas coloidais, proporcionando a este material, propriedades físicas, químicas e físico-químicas diferentes da matéria-prima original. O tempo médio para que a pilha original se decomponha até a bioestabilização é de 30 a 60 dias. Para a completa humificação, serão necessários mais 30 a 60 dias. Desta forma, para completar-se o processo na pilha, serão necessários aproximadamente 90 dias. Para aplicação no solo, a utilização do material bioestabilizado é justificada por três motivos:

a) Ao passar pela fase termófila haverá a destruição de ovos, larvas e microrganismos patogênicos que, porventura puderem existir na massa inicial.

b) Ao apresentar relação C / N abaixo de 20 ainda haverá atividade biológica, mas não haverá o “seqüestro” do nitrogênio do solo para completar o processo.

c) A temperatura não é alta o suficiente para causar danos às raízes ou às sementes. A velocidade e o grau de decomposição dos resíduos orgânicos pode ser medido de várias maneiras:

a) Quantidade de CO2 desprendido

b) Diminuição da relação C/N

c) Ciclo da temperatura

d) Elevação e estabilização do pH

Função dos Fertilizantes Orgânicos

A FUNÇÃO DOS FERTILIZANTES ORGÂNICOS

A produtividade das culturas é conseqüência da ação conjunta de vários fatores: preparo da terra, variedade, adaptação climática, nutrição, espaçamento, disponibilidade de água, conservação de solo, mão-de-obra especializada, etc. A produtividade será máxima, quando todos os fatores estiverem à disposição da cultura. No entanto, a nutrição é o fator que mais contribui para o rendimento.

Há mais de um século sabe-se que as plantas necessitam de treze elementos essenciais: Nitrogênio (N), Fósforo (P), Potássio (K), Cálcio (Ca), Magnésio (Mg), Enxofre (S), Zinco (Zn), Boro (B), Cobre (Cu), Ferro (Fe), Manganês (Mn), Molibdênio (Mo), Cloro (Cl). Alguns deles são requisitados em menor e outros, em maior quantidade.

Nutrir uma planta, do ponto de vista agronômico, não significa simplesmente estimar suas exigências minerais e fornecer insumos concentrados. Embora os fertilizantes minerais (químicos) sejam mais difundidos, mais fáceis de adquirir, transportar, armazenar e distribuir mecanicamente no solo, não significa que sejam perfeitos. Seu principal atributo, a solubilidade, por três razões, nem sempre é vantajoso:

a) Doses excessivas de sais solúveis podem intoxicar as plantas, além de salinizar e acidificar os solos;

b) Os vegetais não absorvem os nutrientes apenas por estes ocorrerem em abundância. Existem peculiaridades na absorção de cada elemento, tais como: pH, presença de antagônicos, espécie iônica, teor nas células, temperatura, aeração, nível de CO2, etc. Isto significa que o nutriente deve estar no lugar certo, em quantidade adequada e no momento mais propício para ser aproveitado.

c) Em solos tropicais, as chuvas abundantes promovem a lixiviação de alguns nutrientes; enquanto que a acidez, associada à elevada capacidade de absorção, provoca a imobilização de outros; neste ambiente, os sais solúveis ficam mais suscetíveis às perdas. Preconiza-se, então, promover, no solo, melhores condições físicas, químicas e biológicas para o aproveitamento dos nutrientes presentes e dos adicionados.

Os solos que correspondem a tais considerações foram formados sob ação da intempérie, comum nas regiões mais quentes e chuvosas. A água abundante lixiviou boa parte dos nutrientes e acidificou o meio. O calor e o tempo, associados à umidade, degradaram as argilas mais complexas e proporcionaram condições para a rápida decomposição da matéria orgânica. Os solos gerados nessas condições são mais pobres, profundos, ácidos, com baixo teor de matéria orgânica. São também conhecidos como latossolos. Além disso, a presença do homem agravou as transformações a medida que consumiu a fertilidade original sem uma reposição proporcional e degradou a estrutura ao introduzir um manejo mecanizado sem adequações. No entanto, esta situação não impediu o desenvolvimento da agricultura, mas, certamente, a tornou altamente dependente de práticas de conservação, que visam reconstruir a estrutura perdida. Caso contrário, os plantios sucessivos provocariam a completa exaustão e a baixa produtividade.

A fertilidade do solo, por sua vez, é resultado de uma combinação de fatores físicos, químicos e biológicos capazes de, em conjunto, propiciar melhores condições para obtenção de altos rendimentos. A matéria orgânica, ou húmus, interfere em todos esses fatores. Práticas que visam conservar ou aumentar o teor de matéria orgânica do solo (por exemplo: combater a erosão, manter a cobertura vegetal, rotação de culturas, descanso, etc.) são as mais eficazes para proporcionar rendimentos elevados às culturas.

São as propriedades coloidais do húmus, principalmente aquelas relacionadas à agregação das partículas, que conferem estabilidade estrutural ao solo. Em conseqüência dos agregados, formam-se macro e microporos, responsáveis pela aeração e pela capacidade de retenção de água, respectivamente.

As propriedades químicas do húmus são representadas principalmente pelo fornecimento de nutrientes essenciais; pela interação com as argilas formando o complexo argilo-húmico, responsável pela majoração da capacidade de troca catiônica (predominância de cargas negativas em relação às positivas); pelo poder complexante sobre metais; pela ação sobre a disponibilidade do fósforo; pela ação estabilizante sobre variações ambientais no solo (modificações no pH, temperatura, teor de umidade, teor de gás carbônico, teor de oxigênio, etc.).

Não há como dissociar uma agricultura próspera, duradoura e sustentável de um solo rico em húmus.

As principais vias para atingir esta situação não são excludentes, ou seja, devem ser empregadas, preferencialmente, de maneira conjunta. São elas: as práticas conservacionistas (já mencionadas) e adubação orgânica.

Fertilizantes orgânicos, ricos em húmus, modificam as propriedades físicas do solo à medida que são aplicados, promovendo a formação de agregados. Como conseqüência, aumentam a porosidade, a aeração, a capacidade de retenção de água, etc. Paralelamente, aumenta-se a capacidade de troca catiônica (CTC) do meio, ou seja, os nutrientes catiônicos, Ca, Mg e K, anteriormente transportados juntamente com a água das chuvas, passam a permanecer disponíveis para as raízes, em quantidades maiores e por mais tempo. Alguns ácidos orgânicos, liberados pelo fertilizante diminuem a adsorção (imobilização) do P. Nessas condições, diminuem também as variações de pH, tornando mais raras as necessidades de calagem (aplicação de calcário no solo para elevar o pH). Além disso, os fertilizantes solúveis, aplicados nestas condições, serão mais bem aproveitados pelas plantas, e sua ação sobre a acidez e a salinização do solo diminuirá substancialmente.

Se fôssemos sintetizar as funções dos fertilizantes orgânicos, empregaríamos apenas uma expressão, muito usada no meio agrícola: “engordam o solo”.

domingo, 16 de agosto de 2009

Vídeos - Chá de Panela Marcis e Samuel

PARA ASSISTIR TODOS OS VÍDEOS ACESSE:

http://www.youtube.com/user/andreluisvha#play/uploads